Magical Power of Transition Metals: Past, Present, and Future

Ei-ichi Negishi, Purdue University

How to Synthesize Any Organic Compounds in High Yields, Efficiently, Selectively, Economically, Safely

1. Consider all usable elements (ca. 70).

Avoid (i) radioactive, (ii) inert, and (iii) inherently toxic elements.

- 2. If desirable and necessary, **consider their binary combinations** (ca. 5,000). (Two is Better than One!)^a
- 3. Use metals for desirable reactivities.
- 4. Use transition metals mainly as catalysts.
 - ^a E. Negishi, *CEJ* **1999**, *5*, 411-420.

Effects of Product Yield and Number of Steps on Overall Yield

		Г		- Overall	Yield (%) -]
Num	ber of Ste	eps 90% Ave	e. Yield	80% A	ve. Yield	70% Ave. Yield
	5	59	9		33	17
	<mark>10</mark>	35	5		11	3
	15	21	1		<mark>3.6</mark>	0.5
	20	12	2		1	0.1
	30	4			0.1	
	40	<mark>1</mark> .	5			
	50	0.	5			

"Step-economy" is of utmost importance !

Scope and Limitations of Uncatalyzed Cross-Coupling with Grignard Reagents and Organoalkali Metals

Note: Cu-promoted and Cu-catalyzed reactions have provided some satisfactory procedures. **Conventional Wisdom**: **Avoid Cross-Coupling! But, should we?**

LEGO Game Approach to C—C Bond Formation via Pd-Catalyzed Cross-Coupling Reactions R¹M + R²X <u>cat. PdL</u>_n → R¹-R² + M—X (Thermodynamic sink!)

 R^1 , $R^2 = C$ group. See below. **M** = Mg, Zn, B, Al, In, Si, Sn, Cu, Mn, Zr, etc. **X** = I, Br, Cl, F, OTs, OTf, etc.

M & X = Regio- & stereo-specifiers, which permit a genuine LEGO Game avoiding addition-ELIMINATION !!!

7

Why Metals?

C⁺ -- short-lived, uncontrolled

Bottom line:

м—с

Intermolecular Interaction in Donor-Acceptor Complexes $\hat{A} \bigcirc B^{\delta^+} \longleftarrow$:>B $A \leq$ $\Delta E_{int} = \frac{\Delta E_{es} + \Delta E_{ex}}{\Delta E_{ex}} + \Delta E_{pol} + \Delta E_{ct} + \Delta E_{c} + \Delta E_{dist}$ **Interaction** = Electrostatic + Exchange Repulsion + Polarization + Charge Transfer + Correlation + Geometry Distortion 150 Electrostatic Exchange 100 Polarization Charge-transfer Energy (kcal/mol Correlation 50 Distortion - Total 0 -50 -100 -150 2 3 5 R_{BN} (Å)

Mo, Y.; Song, L.; Wu, W.; Zhang, Q. J. Am. Chem. Soc. 2004, 126, 3974-3982.

Why d-Block Transition Metals ?

Two Major Reasons (#1)

- I. Simultaneous Availability of Empty and Filled Non-bonding Orbitals (LUMOs and HOMOs)
 - **Note 1**: Strong Affinity toward π -Bonds Explained and Expected.
 - Note 2: Highly Reactive and yet Stable, and Reversible. ("Super-Carbenoidal")

- M. J. S. Dewar
- K. Fukui
- R. Hoffmann
- R. B. Woodward

Note: This has been applied to 1,5-diene synthesis as detailed later.

Note 3: Non-bonding Orbitals can be substituted with σ -Orbitals ("Elemento-metalation")

(These are available to main group metals as well. The only key requirement --- an empty orbital.)

The significance of **concerted synergistic** (HOMO-LUMO & HOMO-LUMO) bonding cannot be overemphasized.

Interactions between Two Coordinatively Unsaturated Metal Species

Bottom line: Two is better than one

Genealogy of Pd-Catalyzed Cross-Coupling

Several Independent Discoveries(1975-1979)

Mg: S. I. Murahashi, N. Ishikawa,
J. F. Fauvarque (1975 & 1976)
(Following Mg-Ni version of Tamao, Kumada and Corriu, 1972)

- Al, Zn, Zr: E. Negishi (1976-1977)
- B: E. Negishi (1978) → A. Suzuki (1979)
- Sn: M. Kosugi (1977) → J. K. Stille (1978)

Other metals: Li, Na, K, Cu, In, Si, Mn

Negishi group contributions:

- 1. Co-discovery of Pd-Catalyzed Cross-Coupling
- 2. Discovery of Al, B, Zn, Zr, etc. as Effective Metal Countercations
- 3. Discovery of Hydrometallation—Cross-Coupling & Carbometallation—Cross-Coupling Tandem Reactions
- 4. Discovery of Double Metal Catalysis, especially with ZnX_2
- Negishi, E., J. Organomet. Chem. 2002, 653, 34.
- Negishi, E., Ed., Handbook of Organopalladium Chemistry for Organic Synthesis 2002, Wiley, Part III, pp 285-1119.

⇒"Last" Synthesis of Amphotericin B C21-C37 Fragment

G. Wang, S. Xu, Q. Hu, F. Zeng, E. Negishi, Chem. Eur. J. 2013, 19, 12938-12942.

⇒"Last" Synthesis of Amphotericin B C21-C37 Fragment

G. Wang, S. Xu, Q. Hu, F. Zeng, E. Negishi, Chem. Eur. J. 2013, 19, 12938-12942.

Total syntheses of mycolactones A and B

Synthesis of Triprotected Side-Chain of Mycolactone A

G. Wang, N. Yin, E. Negishi, *Chem. Eur. J.* **2011**, *17*, 4118 - 4130. N. Yin, G. Wang, E. Negishi, *Angew. Chem. Int. Ed.* **2006**, *45*, 2916-2920. Alkyne Elementometalation–Pd-Catalyzed Negishi Coupling Tandem Processes.

Highly ($\geq 98\%$) Selective Synthesis of All Stereosiomers of 2,4,6-Trienoic Esters

G. Wang, S. Mohan, E. Negishi. Proc. Natl. Acad. Sci. USA, 2011, 108, 11344-11349.

Alkyne Elementometalation–Pd-Catalyzed Negishi Coupling Tandem Processes.

Highly ($\geq 98\%$) Selective Synthesis of All Stereosiomers of 2,4,6-Trienoic Esters

Cond. I: 1% PEPPSI, THF, 23 °C, 12 h

G. Wang, S. Mohan, E. Negishi. Proc. Natl. Acad. Sci. USA, 2011, 108, 11344-11349.

Alkyne Elementometalation–Pd-Catalyzed Negishi Coupling Tandem Processes.

Highly ($\geq 98\%$) Selective Synthesis of All Stereosiomers of 2,4,6-Trienoic Esters

G. Wang, S. Mohan, E. Negishi. Proc. Natl. Acad. Sci. USA, 2011, 108, 11344-11349.

ALKYNE ZMA-Pd-CATALYZED ALKYL-ALKENYL COUPLING: LEGO GAME ROUTE TO COQ₁₀

CAN WE POSSIBLY SYNTHESIZE THESE NATURAL POLYOLEFINS BY THE ZIEGLER-NATTA POLYMERIZATION?

Nature does it, but.....

Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA Discovery)

Early Contributions

- Kondakov, D. Y.; Negishi, E., 1995 JACS 10771, 1996 JACS 1577.
- Huo, S.; Negishi, E., 2001 OL 3253.
- Huo, S.; Shi, J.; Negishi, E., 2002 ACIE 2141.

Contributions by Others

- Erker, G. et al. 1993 JACS 4590
- Wipf, P.; Ribe, S. 2000 OL 1713

Zr-Catalyzed Asymmetric Carboalumination of Alkenes (Solvent Effect)

Kondakov, D. Y.; Negishi, E. J. Am. Chem. Soc. 1996, 118, 1577-1578.

WHAT CAN HAPPEN IN THE FOLLOWING REACTIONS?

(ii) Polymerization (iii) Cyclic carbozirconation

The Importance of Organometallic Functionality

Catalytic asymmetric C–C bond formation

> One-point-binding without requiring any other functional groups

Organometallic functionality with many potential transformations

STATISTICAL ENANTIOMERIC AMPLIFICATION

Bottom Line (No. 3): (a) Cleverly exploit the statistical enantiomeric amplication principle.

It's mathematical (or statistical)

If each step is 80%ee (90/10),

Enantiomers
(9R + 1S) (9R + 1S) = 81R,R + 18 R,S (S,R) + 1S,S
Diastereomers

$$\frac{R,R}{S,S} = \frac{81}{1} \quad \therefore \text{ Enantiomeric Excess} = \frac{81-1}{81+1} = \frac{80}{82} = 0.976 \quad \approx 98\% ee$$
(9R + 1S)ⁿ = 9ⁿ x Rⁿ + Σ (All Cross Terms) + 1ⁿ x Sⁿ
Diastereomers

$$\frac{n \quad ee (\%)}{1 \quad 80}$$
2 98 (= 97.6)
3 99.97
5 99.997

Pd-Catalyzed Cross-Coupling Reaction of TBSO

^{*a*}**A**: 5% Pd(DPEphos)Cl₂, 10% DIBAL-H, THF-ether, 23 °C, 12 h; **B**: 5% Pd(PPh₃)₄, THF-ether, 23 °C, 12 h; **C**: 5% Pd(DPEphos)Cl₂, DMF-THF-ether, 23 °C, 12 h; **D**: 5% Pd(DPEphos)Cl₂, THF, 23 °C, 12 h. ^{*b*}Zincation: ^{*t*}BuLi (2.1 equiv), and then dry ZnBr₂ (0.6 equiv)

B. Liang, T. Novak, Z. Tan, E. Negishi, J. Am. Chem. Soc. , 2006. 128, 2770-2771.

Synthesis of (2*R*,4*R*,6*R*,8*R*)-2,4,6,8-Tetramethyldecanoic Acid, The Acid Component of Preen-Gland Wax of Graylag Goose, *Anser Anser*

B. Liang, T. Novak, Z. Tan, E. Negishi, J. Am. Chem. Soc. 2006, 128, 2770 – 2771.

LEGO Game Route to Yellow Scale Pheromone

^a (-)-ZACA = $Me_3AI(3.0 \text{ equiv})$, 1 mol % (-)-(NMI)₂ZrCl₂, H₂O(0.5 equiv), CH₂Cl₂, 23 ^oC, 5 h

^b OAc(5 equiv), Amano PS lipase (30 mg/ mmol)

Z. Xu, E. Negishi, Org. Lett. 2008, 10, 4311-4314.

Lipase-Catalyzed Kinetic Resolution of Enantiomeric Mixtures

Preparation of (S)-2-Methyl-1-alcohols (≥98% ee) from Enantiomeric Mixtures

Initial ee _o (%)	$E^{[a]}$	Max. yield (%) ^{[a}	a,b]	Initial ee _o (%)	$E^{[a]}$	Max.	
0 (racemic)	100 90	<u>≤</u> 2 0		70	100 50	yield (%) ^[a,b]	<u>≤</u> 85 ~80
20	100 80 60	≤35 ~20			30 20 10		~80 ~25 0
50	100 50 40 30	≤70 ~55 ~25 0		80	100 30 20 10		≤90 ~85 ~70 0
60	100 50 30 20	<u><</u> 80 ~65 ~25		90	100 20 10 5		≤95 ≤95 80 0

(adopted from C. J. Sih's paper: JACS, 1982, 104, 7294)

Huang, Z.; Tan, Z.; Novak, T.; Zhu, G.; Negishi, E., Adv. Synth. Catal. 2007, 349, 539-545.

⇒E Factors

Huang, Z.; Tan, Z.; Novak, T.; Zhu, G.; Negishi, E., Adv. Synth. Catal. 2007, 349, 539-545.

Lipase-Catalyzed Kinetic Resolution of ZACA Products

R	AlMe ₃ , cat.(-)-(NMI) Initial Yield	2ZrCl ₂	Me R Initial ee	Enzyme, Solven	vinyl acetate t, Temp.	e Me R J O Final e	H + R	OAc
R	Initial Yield (%)	Intial ee (%)	Enzyme	Solvent	Temp.(^o C)	Conversion (%)	Recovery (%)	Final ee (%)
Ph	85	89	Amano PS	THF/H ₂ O	23	22	68	93
			Amano PS	THF/H ₂ O	23	50	43	96
			PPL	THF/H ₂ O	23	31	62	99
PhCH ₂	85	76	PPL	THF/H ₂ O	23	48	51	77
			Amano PS	THF/H ₂ O	23	40	<mark>-59</mark>	99
Ph(CH ₂) ₂	84	76	PPL	THF/H ₂ O	23	30	64	99
			Amano PS	THF/H ₂ O	23	38	56	99
ⁿ Hex	71	72	Amano PS	CH_2CI_2	0	44	52	98
CH ₂ =CHCH ₂	NA	82	Amano PS	CH_2CI_2	0	19	76	98

Huang, Z.; Tan, Z.; Novak, T.; Zhu, G.; Negishi, E., Adv. Synth. Catal. 2007, 349, 539-545.

Enantiomeric Purification of (R) and (S) Isomers of 2-Methyl-1-alkanols

Huang, Z.; Tan, Z.; Novak, T.; Zhu, G.; Negishi, E., Adv. Synth. Catal. 2007, 349, 539-545.

⇒How to Prepare Feebly Chiral Compounds of ≥99% ee

General Strategy for Synthesis of Feebly Chiral 2-Alkyl-1-Alkanols of ≥99% ee

ZACA Reaction of Allyl Alcohol

Asymmetric synthesis of (R)- and (S)-3-iodo-2-alkyl-1- alkanols 1

//	∕ОН	i) (+)-ZAC or (-)-Z/	$ACA R_2AI$		ii) I ₂ ; ii) H ₂ O 3	I, S or R	ЭН
	Entry	R	Protocol ^[a]	Product	Yield ^[b] (%)	Purity of 1 (% ee ^[c])	5 1
	1	Ме	I	(S)-1a	80	82	
	2	Ме	II	(<i>R</i>)-1a	81	84	Zr
	3	Et		(<i>S</i>)-1b	60	87	CI CI
	4	Et	IV	(<i>R</i>)-1b	62	88	(-)-(NMI) ₂ ZrCl ₂
	5	^{<i>n</i>} Pr		(S)-1c	59	82	or (+)-(NMI) ₂ ZrCl ₂
	6	^{<i>n</i>} Pr	IV	(<i>R</i>)-1c	60	80	

^[a] Protocol I: i) Me₃Al (2.5 eq), MAO (1 eq), 5%(+)-(NMI)₂ZrCl₂ ii) I₂ (2.5 eq), THF Protocol II: i) Me₃Al (2.5 eq), MAO (1 eq), 5%(-)-(NMI)₂ZrCl₂ ii) I₂ (2.5 eq), THF Protocol III: i) R₃Al (3.0 eq), IBAO (1 eq), 5%(+)-(NMI)₂ZrCl₂ ii) I₂ (6 eq), Et₂O Protocol IV: i) R₃Al (3.0 eq), IBAO (1 eq), 5%(-)-(NMI)₂ZrCl₂ ii) I₂ (6 eq), Et₂O
^[b] Isolated yield ^[c] Enantiomeric excess

Lipase-Catalyzed Acetylation of (S)-3-Iodo-2-Alkyl-1-Alkanols

I (S)-	→OH + -1 ⁽⁴⁾	Lipase + 0 mg/ mmol)		R I (S)-1	$H + I \xrightarrow{R} OAc$ (R)-2
R = 1	Vle (1a), Et (1	b), ⁿ Pr(1c)		Major	Minor
Entry	Substrate	Initial purity of (S)-1 (% ee)	Lipase	Recovery of (S)-1 (%)	Purity of (<i>S</i>)-1 (% <i>ee</i>)
1	(S) -1a	82	Amano PS	63	≥99 —► 50% yield from allyl alcohol
2	(S) -1b	87	Amano PS	72	96
3	(S)-1b	87	Amano AK	74	96
4	(S)- 1b	87	Amano AK	60	≥99 —➤ 36% yield from allyl alcohol
5	(S)- 1c	82	PPL	35	85
6	(S) -1c	82	Amano AK	74	94
7	(S) -1c	82	Amano AK	58	≥99 —> 34% yield from allyl alcohol
8	(S)-1c	82	Amano PS	74	92
9	(S)- 1c	82	Lipase from Rhizomucor Miehei	. 34	80
10	(S)- 1c	82	Lipase from Candida rugosa	59	83

Lipase-Catalyzed Acetylation of (R)-3-Iodo-2-Alkyl-1-Alkanols

R = N	→OH + 1 ⁽⁴⁰ //e (1a), Et (1	Lipase + 📉 0 mg/ mmol) b), ⁿ Pr(1c)	OAc <u>THF</u>		OAc + I	R OH (S)-1 Minor
Entry	Substrate	Inital purity of (<i>R</i>) -1 (% ee)	Lipase	Yield of (<i>R</i>) -2 (%)	Purity of (<i>R</i>) -2 (% e	e)
1	(<i>R</i>)-1a	84	Amano PS	60	≥ 99 —	→ 49% yield from allyl alcohol
2	(<i>R</i>)-1b	88	Amano PS	52	<u>></u> 99	
3	(<i>R</i>)-1b	88	Amano PS	64	98	
4	(<i>R</i>)- 1b	88	Amano PS	81	96	
5	(<i>R</i>)-1b	96	Amano PS	62 ^[a]	<mark>≥</mark> 99 —	→ 38% yield from allyl alcohol
6	(<i>R</i>)-1c	80	Amano AK	50	<u>></u> 99	
7	(<i>R</i>)-1c	80	Amano AK	60	98	
8	(<i>R</i>)-1c	80	Amano AK	79	94	
9	(<i>R</i>)-1c	94	Amano AK	60 ^[b]	<mark>≥</mark> 99 —	→ 36% yield from allyl alcohol

^[a] Overall yield in two rounds of lipase-catalyzed purification (entry 4+5).

^[b] Overall yield in two rounds of lipase-catalyzed purification (entry 8+9).

Synthesis of Feebly Chiral 2-Alkyl-1-alkanols

Synthesis of Feebly Chiral 2-Alkyl-1-alkanols

[a] LiAlH₄ [b] Con. I: CuCl₂ (5 mol%),PhC≡CMe (15 mol%), RMgCl [c] i) Con. I; ii) KOH

Synthesis of Feebly Chiral 2-Alkyl-1-alkanols

Synthesis of (*R***)- and (***S***)-Arundic Acids**

General Strategy for the Synthesis of Remotely Chiral (n+1)-alkyl-1-alkanols of $\geq 99\%$ ee, where $n \geq 2$

 R^1 = alkyl group, R^2 = alkyl, alkenyl, alkynyl, or aryl group

 R^1 and CH_2R^2 may be very similar

Synthesis of Feebly Chiral 3-Alkyl-1-alkanols

Synthesis of Feebly Chiral 4-Alkyl-1-alkanols

Synthesis of Feebly Chiral 4-Alkyl-1-alkanols

Synthesis of Feebly Chiral 5-Alkyl-1-alkanols

Determination of ee by MaNP Ester

Acknowledgments

Pd- or Ni-Catalyzed C–C Bond Formation

1976-1980	Baba, S. King, A. O. Okukado, N. Kobayashi, M. Van Horn, D. E.	Valente, L. F. Silveira, A. Jr. Villani, F. J. Klima, W. L. Spiegel, B. I.	
1980-1985	Matsushita, H. Miller, J. A. Tour, J. M.	Chatterjee, S. Luo, F. T. Rand, C. L. John, R. A. Frisbee, R. Pecora, A. J.	Sawada, H. Bagheri, V. Stoll, A. T. Lovich, S. F. Boardman, L. D.
1985-1990	Takahashi, T. Akiyoshi, K. Zhang, Y. Wu, G.	Cederbaum, F. E. Webb, M. B. Noda, Y. Lamaty, F. Vawter, E. J. Iyer, S.	O'Connor, B. Nguyen, T. B. Rousset, C. J. Agnel, G. Evans, J. M.
1990-1995	Owczarczyk, Z. Sugihara, T. Copéret, C. Ma, S.	Swanson, D. R. Ay, M. Gulevich, Y. V. Choueiry, D.	Harring, L. S. Mohamud, M. M. Amanfu, J. Shimoyama, I.
1995-2000	Xu, C. Kotora, M.	Pour, M. Liu, F. Tan, Z. Alimardanov, A. Hata, M. Liou, S. Y.	Mita, T. Makabe, H. Liao, B. Reeves, M. Dumond, Y.
2000-2002	Huo, S. Zeng, F. Anastasia, L.	Montchamp, J. L. Gagneur, S. Babinski, D.	

ACKNOWLEDGMENTS

1978 – 1980	Van Horn, D. E.	Valente, L. F.
1980 – 1985	Yoshida, T. Rand, C. L. Boardman, L. D. Miller, J. A.	Kobayashi, M. Moore, M. W. Tour, J. M. Sawada, H.
1985 – 1990	Takahashi, T. Swanson, D. R. Rousset, C. J. Akiyoshi, K. Takagi, K.	Holmes, S. J. Cederbaum, F. E. Seki, T. Lamaty, F. Miller, S. R. O'Connor, B. Wu, G.
1990 – 1995	Suzuki, N. Choueiry, D.	Agnel, G. Kageyama, M. Nguyen, T. Maye, J. P. Copéret, C. Wang, S.
1995 – 2000	Kondakov, D. Y. Montchamp, J. L. Dumond, Y.	Liu, F. Ma, S. Sugihara, T. Noda, Y.
2000 – 2002	Huo, S. Shi, J.	Xu, C. Liou, S. Y. Gagneur, S. Zeng, F. Makabe, H.

Recent Contributors

2003-2005	Zeng, X.	Tan, Z.		
	Qian, M.	Liang, B.		
	Hu, Q.	Novak, T.		
	Huang, Z.	Magnin-Lachaux	, M.	
	Shi, J.			
2006-	Wang, G.	Métay, E.	Tobrman, T.	
	Zhu, G.	Mohan, S.	Rao, H.	
	Yin, N.	Wang, C.	Maishal, T.	
	Xu, Z.	Truex, N.	Reeds, N.	
	Xu, S.	Lee, CT.	Kim, U.	
	Oda, A.	Kamada, H.	Matsueda, Y.	
	Li, H.	Zhang, L.	Bobinski, T	
	Komiyama, M.	Lu, N.		

NIH, NSF, Purdue University, Teijin, Albemarle, Nichia, and Sigma-Aldrich2

