Air Quality and Climate Change

Mario J. Molina and Luisa T. Molina
Massachusetts Institute of Technology

Bridges – Towards a Culture of Peace
International Peace Foundation
Bangkok, Thailand
March 2005
Major Environmental Challenges for the 21st Century

• Water Supply - Water Quality
• Depletion of Natural Resources
 – Degradation of Land – Loss of Biodiversity
 – Deforestation – Over-exploitation of Fisheries
• Disposal of Solid and Hazardous Waste

• Air Quality
• Global Changes in the Chemical Composition of the Atmosphere
 – Stratospheric Ozone Depletion
 – Climate change/Greenhouse Effect
 – Tropospheric Ozone and Particulate Matter
CFC-Stratospheric Ozone Depletion Theory
Weekly cycle of mean tropospheric NO$_2$ vertical column densities for six urban centers

Source: Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.
Air Pollution in Cairo

• All of Greater Cairo suffers from high levels of air pollution.
• PM_{10} is dominated by soil dust material, open burning, and mobile source emissions.
• $\text{PM}_{2.5}$ is dominated by mobile source emissions, open burning, and secondary species.
• Smelters are the dominant source of airborne lead.
• Sources other than transportation activities need to be addressed.

Source: Alan Gertler (DRI)
Trends in criteria pollutant concentrations for the Mexico City Metropolitan Area
(averages of data at five RAMA sites)

Lead (µg/m³)

- Ann. avg.
- 95 Perc

SO₂ (ppb)

- Daily 95%
- Daily 50%
- Ann. avg.

CO (ppm)

- 8-hr. 95%
- 8-hr. 50%
- Ann. avg.
Trends in criteria pollutant concentrations for the Mexico City Metropolitan Area
(averages of data at five RAMA sites)
Integrated Program on Urban, Regional and Global Air Pollution: Mexico City Case Study (Mexico City Air Quality Program)

Objective:

Provide objective, balanced assessments of the causes and alternative cost-effective solutions to urban, regional and global air pollution problems through quality scientific, technological, social and economic analysis in the face of incomplete data and uncertainty

- Use Mexico City as the initial case study
- Develop an approach that applies globally
- Build on strong base of ongoing basic research

Collaborative Research and Education Program involving Mexican, US and other international institutions
A Framework for Integrated Assessment

<< Integrated Science & Economic Impact >>

Atmospheric Science
- Atmospheric Data
 - Meteorological Model
 - Gas-Particulate Photochemical Model
- Ecosystem Science
 - Ecosystem Impact Model (Agriculture, Water, Climate Change, etc.)
- Health Effects Science
 - Demographic & Health Statistics
 - Health Effects/Impacts Models (Damage Functions, Productivity Losses, etc.)

Economic Costs of Ecosystem Damages

<< Policy & Mitigation >>

Behavior and Emissions
- Emissions & Reduction Costs (Area / Point / Mobile)
 - Emission Model(s)
 - Household/Commercial
 - Energy Supply/Industry
 - Transportation Model(s)

Policy Development & Implementation
- Policy & Other Recommendations (Institutional & Social Factors / Stakeholder Education & Outreach)
 - Economic Costs of Human Impacts (Response Strategies / Scenarios)
Summary of the First Phase of the Mexico City Air Quality Program

Chapter 1. Air Quality Impacts: A Global and Local Concerns

Chapter 2. Cleaning the Air: A Comparative Overview

Chapter 3. Forces Driving Pollutant Emissions in the MCMA

Chapter 4. Health Benefits of Air Pollution Control

Chapter 5. Air Pollution Science in the MCMA: Understanding Source-Receptor Relationships Through Emissions Inventories, Measurements and Modeling

Chapter 6. The MCMA Transportation System: Mobility and Air Pollution

Chapter 7. Key Findings and Recommendations
Increase in Automobiles per Capita in Mexico City

Motorization Index in the MCMA

Number of Motor Vehicles per thousand inhabitants
Four-part plan to clean the air in the Mexico City Metropolitan Area

- Launch a program to retrofit or retire the dirtiest fleets of truck, buses, and cars.
- Tighten the “tailpipe standards” on all new cars, trucks, and buses sold in Mexico, so they conform to world class standards.
- Introduce ultra-low sulfur fuels, both gasoline and diesel, which is required for clean car and truck technologies.
- Improve public transportation and reduce congestion.
Air Quality Problems: Future outlook

• **Interdisciplinary research**
 Holistic approach: take into account scientific, technical, economic, social, and political factors, as well as the existing infrastructure.

• **Integrated solutions**
 There is no “magic bullet”: a mix of policy measures is needed to improve air quality. Need to integrate relevant policies for transportation, land use and air quality.

• **Institutional improvement**
 Strong leadership and political will is essential to develop institutional capacity and enforce regulations.

• **Stakeholder involvement**
 Promote participatory processes; develop effective partnerships with all stakeholders of civil society.
Estimated Health Benefits of a 10% Reduction of Pollution Levels in the MCMA

<table>
<thead>
<tr>
<th></th>
<th>PM10</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background Rate (case-persons-yr)</td>
<td>Risk Coefficient (% per 10µg/m³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>10/1000</td>
<td>3</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>5/1000</td>
<td>1</td>
</tr>
<tr>
<td>Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>14/1000</td>
<td>10</td>
</tr>
<tr>
<td>Bronchitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>5/1000</td>
<td>0.5</td>
</tr>
<tr>
<td>Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>8000/1000</td>
<td>1.0</td>
</tr>
<tr>
<td>Restricted Activity Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4. Health Benefits of Air Pollution Control: John Evans, Jonathan Levy, James Hammitt, Carlos Santos Burgoa, and Margarita Castillejos.
Mobile Laboratory Modes of Operation
February 2002, April 2003

Stationary Sampling
High time resolution point sampling
Quality Assurance for conventional air monitoring sites

Mobile Sampling/Mapping
Motor vehicle pollution emission ratios
Large source plume identification
Ambient background pollution distributions

Chase
Detailed mobile source emissions characterization
Plume tracer flux measurements
“In-plume” sampling indicated by *above-ambient* CO$_2$ levels

Emission Ratio = ΔSignal/ΔCO$_2$
Aerosol Mass Spectrometer (AMS) at MCMA

100% transmission (60-600 nm), aerodynamic sizing, linear mass signal.
Heterogeneity in a single soot particle

Only Carbon

S, K inclusions

Si inclusion

S inclusion
Fresh soot particles (ARI van) vs Aged soot particles (CENICA)

Fresh soot (collected in ARI van) vs **Processed soot** (collected at CENICA)
Outflow of Aerosol, Northern India

The skies over Northern India are filled with aerosol particles all along the southern edge of the Himalayan Mountains, and streaming southward over Bangladesh and the Bay of Bengal.
Pollution from afar. Satellite remote sensing images of trans-Pacific transport of aerosols in April 1998 originating from a massive dust storm in China.

SCIENCE, vol 290, October 2000
motivating factors:

It is projected that over the next few decades, rapid industrialization and growth of ‘megacities’ in many parts of the world may lead to dramatic increases in total global air pollution emissions. As a result, intercontinental pollution transport is likely to become a growing problem. For instance, studies indicate that in the coming years, pollution transported from Asia could have significant impacts upon U.S. air quality.

Air pollution affects climate through radiative forcing (O_3 and aerosols) and through chemical feedbacks which alter the lifetime of reactive greenhouse gases. In turn, climate change can influence the emissions, formation, transport, and deposition of numerous air pollution species. These climate/chemistry feedbacks need to be better understood, both to make accurate predictions of future climate changes and to design effective long-term air quality management strategies.
The Global Mean Radiative Forcing of the Climate System for the Year 2000, relative to 1750
Atmospheric Aerosols: The Direct Effect

Some aerosols absorb sunlight decreasing the cooling effect of backscattering but still cooling the surface.

All aerosols absorb thermal infrared radiation, hindering its escape from the atmosphere.
The Indirect Effect

Cloud Formation in Polluted Environments

Clouds in polluted air contain more and smaller droplets

Some aerosol “activate” and become cloud condensation nuclei

When the air is saturated, water vapor finds aerosols to condense upon

Cloud formation depends on the ambient aerosol population

The same amount of water distributes onto more particles, more of which activate, and more of which become cloud drops

Polluted air contains many more aerosol than clean air

When cloud droplets are smaller:

The cloud more effectively reflects incident sunlight, thus cooling the region below (the 1st Indirect Effect)

It is more difficult for droplets to grow very large, suppressing precipitation (the 2nd Indirect Effect)
Reduction of Tropical Cloudiness by Soot

A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield,
V. Ramanathan, E. J. Welton

Science, 288, **2000**, 1042-1047

Images of clouds within clean and dirty marine boundary layers obtained during the INDOEX Intensive Field Phase in 1999.

(A) 4.3°S, 73°E in clean air from the southern Indian Ocean
(B) 0.2°N, 73°E in polluted air 1000 km distant from India.
The Global Mean Radiative Forcing of the Climate System for the Year 2000, relative to 1850 [Hansen and Sato, PNAS 2001]

Air Quality-related forcing: $0.7 \text{ (CH}_4\text{)} + 0.5 \text{ (O}_3\text{)} + 0.8 \text{ (BC)} = 2.0 \text{ W m}^{-2}$

Cooling from anthropogenic aerosols: $-1.3 \text{ (dir.)} - 1.0 \text{ (indir.)} = -2.3 \text{ W m}^{-2}$
Questions about specific environmental issues:

• Is something significant happening to the environment?

• Is it a consequence of human activities?

• Should society do something about it?

• If so, how should the problem be solved?
Global Atmospheric Concentrations of Three Greenhouse Gases

- **Carbon Dioxide**
 - Concentration: \(\text{CO}_2 \) (ppm)
 - Year: 1000 to 2000

- **Methane**
 - Concentration: \(\text{CH}_4 \) (ppb)
 - Year: 1000 to 2000

- **Nitrous Oxide**
 - Concentration: \(\text{N}_2\text{O} \) (ppb)
 - Year: 1000 to 2000
Mean Surface Temperature
1000 to 2000
The solid red line shows the distribution resulting from no emissions restrictions, and the dashed blue line is the distribution under the sample policy.

Source: Webster et al. (2002)
Human Population Growth